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Generation of spatiotemporal correlated noise in 1¿1 dimensions
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We propose a generalization of the Ornstein-Uhlenbeck process in 111 dimensions which is the product of
a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The
generalized Langevin equation of the process, the corresponding Fokker-Planck equation, and a discrete inte-
gral algorithm for numerical simulation are given. The process is an alternative to a recently proposed spa-
tiotemporal correlated model process@J. Garcı´a-Ojalvo et al., Phys. Rev. A46, 4670 ~1992!# for which we
calculate explicitly the hitherto unknown autocorrelation function in real space.
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I. INTRODUCTION

Noise induced phenomena are subject of considerable
cent attention@1,2#. After considering in the early phase sy
tems with only few degrees of freedom@1# in the last decade
the effects of noise in spatially distributed systems have b
investigated@2#. In this context stochastic model process
are necessary to mimic spatiotemporal fluctuations of dif
ent origin. If characteristic time and length scales of the s
tem and noise are clearly separated, the use of a spatio
poral Gaussian white noise may be justified, but it can a
lead to spurious results@3–5#. There are physical situation
where the characteristic scales are not well separated, e.
externally driven systems@6#, or where the square of th
driving stochastic process is involved. Both hold in elect
hydrodynamic convection in nematic liquid crystals~see,
e.g., Ref.@7#!, driven by external stochastic electric field
@8,9#. Further examples are the influence of spatiotempo
colored noise on spatiotemporal chaos modeled by the c
plex Ginzburg-Landau equation@10# and on networks of ex-
citable systems displaying spatiotemporal stochastic re
nance@11#. This sufficiently motivates to model correlate
spatiotemporal fluctuations. For an approach based on di
ent grounds see, e.g., Ref.@12#.

A frequently used spatiotemporal correlated model p
cess was introduced by Garcı´a-Ojalvo, Sancho, and Ramirez
Piscina~GSR! @13# who considered in spatial dimensiond,
rPRd the stochastic partial differential equation~PDE!

t
]

]t
w~r ,t !52~12l2D!w~r ,t !1j~r ,t !, ~1!

where the additive driving processj(r ,t) is Gaussian distrib-
uted with zero mean and with autocorrelationKj(r ,t;r 8,t8)
5^j(r ,t)j(r 8,t8)&5s2d(r2r 8)d(t2t8).

The heuristics of Eq.~1! is evident: the diffusive term
effectively reduces the lifetime of Fourier components w
wavelengths short compared tol, see also below. Forl
50 it reduces to the Langevin equation defining the comm
temporal Ornstein-Uhlenbeck process~OUP! @14–16#. The
solutions are thus, in a sense, generalizations of the O
Equation~1! belongs to a class of stochastic PDEs for wh
existence and uniqueness of the solution are proven ri
ously @17#. It is discussed also in the context of reactio
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diffusion systems~see, e.g., Ref.@18#!, and within a gener-
ating functional approach@12#.

In this paper we propose an alternative spatiotempo
generalization of the OUP in 111 dimension which is sim-
ply the product of a temporal OUP with a spatial one and
exponentially decaying autocorrelation. To make the pa
self-contained and to introduce the notation that is used
the sequel, we shortly recall in Sec. II basic properties a
numerical generation of the common OUP in one~temporal!
dimension. The scaling necessary when transforming
tween discrete and continuous formulations is carefully d
cussed. In Sec. III the generalized OUP is constructed in
pendently within a spatially discretized scheme and in
continuous version as the solution of a stochastic PDE
ferent from Eq.~1!. Subsequently, conditions that ensure s
tionarity and homogeneity are discussed, the general
Fokker-Planck equation and its stationary solution are giv
and numerically generated data are compared with the
lytic results. In Sec. IV the autocorrelation function of th
GSR process is explicitly calculated in real space ford51 in
both continuous and discrete formulations and compa
with numerical results. Previous work studied the behavio
real space only for spatial dimensionsd52 @13,19# and d
53 @19#; see, however, Ref.@20#. Contrary to conventiona
outlook @10,22#, the autocorrelations of the GSR process d
cay not exponentially but in a more intricate way.

Problems connected with the generalization to higher
mensions are briefly discussed in the concluding section

II. THE ORNSTEIN-UHLENBECK PROCESS

The OUP is the only stationary Gaussian Markov proc
with exponentially decaying autocorrelation~Doob’s theo-
rem @23#!. Realizationsh(t) of the OUP can be generated b
solving the Langevin equation

t
d

dt
h~ t !52h~ t !1j~ t !, ~2!

where j(t) is a Gaussian white noise witĥj(t)j(t8)&
5s t

2d(t2t8). In a mathematically precise form, Eq.~2!
reads
©2004 The American Physical Society16-1
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tdh~ t !52h~ t !dt1dW~ t !, ~3!

where W is a Wiener process with ^W(t)W(t8)&
5s t

2min(t,t8); note dW(t)/dt5j(t). Solving Eq. ~3! with
initial condition h(t0)5h0 gives

h~ t !5h0e2(t2t0)/t1
1

t
e2t/tE

t0

t

dW~s!es/t, ~4!

which has the autocorrelation

^h~ t !h~ t8!&5S ^h0
2&2

s t
2

2t De2(t1t822t0)/t1
s t

2

2t
e2ut2t8u/t.

~5!

The process becomes stationary if the initial values
Gaussian distributed with zero mean and variances t

2/2t, or
in the limit t,t8→`, or for t0→2`; it is then the OUP. We
denote the stationary part of the autocorrelation function

Kh~ t2t8!5
s t

2

2t
e2ut2t8u/t. ~6!

Naturally, Kh(t2t8) solves the inhomogeneous equati
which is obtained by multiplying Eq.~2! by h(t) given by
Eq. ~4! and averaging

t
d

dt
Kh~ t2t8!52Kh~ t2t8!1Q~ t82t !

s2

t
e2(t82t)/t.

~7!

Given the valueh(t) we can obtainh(t1Dt) as

h~ t1Dt !5h~ t !e2Dt/t1
1

t
e2(t1Dt)/tE

t

t1Dt

dW~s!es/t,

~8!

where the last term on the right-hand side~rhs! is a stochastic
increment. The increments in nonoverlapping time interv
are obviously independent; they have zero mean and
variance, see, e.g., Ref.@24#,

s t
2

2t
~12e22Dt/t!. ~9!

Introducing the notationh t5h(tDt), whereDt is fixed and
t5 . . . ,21,0,1, . . . , oneobtains, for every choice ofDt, an
exact recursion relation for equidistant discrete times~dis-
crete integral algorithm!,

h t115h te
2Dt/t1

s t

A2t
A12e22Dt/tj̃ t11 , ~10!

wherej̃ t are independent zero mean Gaussian random n
bers with variance 1, cf. Ref.@25#.

For small Dt a Taylor expansion of the rhs of Eq.~8!
leads to
02611
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h~ t1Dt !5h~ t !S 12
Dt

t D1
Dt

t
j~ t1Dt !. ~11!

The discrete version of Eq.~11! is obtained using the
above notation and replacingj(t) by s tj̃ t /ADt. This ensures
the correct autocorrelation in the continuum limit observi
lim

Dt→0
d t,t8 /Dt5d(t2t8) and amounts to a rescaled var

ances̃ t
25s t

2/Dt,

h t115h tS 12
Dt

t D1
Dt

t
s̃ tj̃ t11 . ~12!

All results are consistent: Eq.~11! can be derived from Eq
~2! using an Euler discretization, and Eq.~12! from Eq. ~10!
by a Taylor expansion of the coefficients.

III. A GENERALIZATION TO 1 ¿1 DIMENSIONS

In this section we generalize the OUP and construct in
11 dimensions a spatiotemporal random fieldw(x,t) with
reasonable properties. For fixedx the process should be th
common temporal OUP described above and for fixedt a
spatial OUP. It is reasonable to require translational inva
ance, analogous to temporal stationarity, of all averages
an exponential decay of the spatiotemporal autocorrelati

Kw~x2x8,t2t8!5^w~x,t !w~x8,t8!&

5
s2

4lt
e2ux2x8u/l2ut2t8u/t, ~13!

wheres5sss t , ss and l characterizing for fixed time the
spatial process.

We propose two independent schemes leading to the s
result. First we employ a spatially discrete scheme to c
struct more general spatiotemporal correlated proce
given in Ref. @26#. Alternatively, we consider a linear sto
chastic PDE different from Eq.~1! driven by additive Gauss
ian spatiotemporal white noise and show that its station
solutions are Gaussian distributed and have the desired p
erties. The analytic results are corroborated by numer
data.

A. Recursive generation

We consider the fieldw(x,t) on equidistant lattice sitesi,
i 50, . . . ,N, adopting the notationw i(t)5w( iDx,t). In the
first step of construction we generate spatially independ
OUPsh i(t) using a standard algorithm, e.g., Refs.@24,27#,
with autocorrelation

Ki j
h~ t2t8!5^h i~ t !h j~ t8!&5

s2

4lt
e2ut2t8u/td i , j . ~14!

We then, as proposed in Ref.@26# to construct a more genera
spatiotemporal correlated noise, superpose these proces

w i~ t !5 (
k50

i

aikhk~ t !, i 50, . . . ,N. ~15!
6-2
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Since this expression is linear inhk , also thew i are Gauss-
ian distributed with zero mean. Requiring that the spa
autocorrelation is the discrete version of Eq.~13! for equal
times,

Ki j
w~0!5 (

k50

min(i , j )

aikajk^hk~ t !2&5
s2

4tl
e2u i 2 j uDx/l, ~16!

determines the coefficientsajk . It is easy to check that

ajk5e2( j 2k)Dx/l~A12e22Dx/l!12dk,0, ~17!

where j 50, . . . ,N and k50, . . . ,j . Using these coeffi-
cients, we write

w j~ t !5e2 j Dx/lh0~ t !1e2( j 21)Dx/lA12e22Dx/lh1~ t !1•••

1A12e22Dx/lh j~ t !. ~18!

With the corresponding formula forw j 11(t), we find

w j 11~ t !5e2Dx/lw j~ t !1A12e22Dx/lh j 11~ t !, ~19!

where h j 11(t) are the spatially independent random nu
bers specified above, each of which being a temporal O
Obviously, this is the spatial analog of the discrete integ
algorithm ~10! for the temporal process.

In discrete notation both for space and time we ins
h j 11,t11 from Eq. ~10!, after replacings t /A2t→s/A4tl,
into Eq. ~19! ~written for w j 11,t11), and obtain finally

w j 11,t115e2Dx/lw j ,t111e2Dt/tw j 11,t2e2Dt/t2Dx/lw j ,t

1A12e22Dx/lA12e22Dt/t
s

A4tl
j̃ j 11,t11 ,

~20!

where^j̃ i ,tj̃ j ,t8&5d i , jd t,t8 . For simulations, this discrete in
tegral algorithm is preferable since by construction it is c
rect for any choice ofDx andDt.

Expanding the coefficients in Eq.~20! for small Dx and
Dt, a first-order discrete differential algorithm, the genera
zation of Eq.~12!, is obtained,

w j 11,t115S 12
Dx

l Dw j ,t111S 12
Dt

t Dw j 11,t

2S 12
Dx

l D S 12
Dt

t Dw j ,t1
DxDt

lt
s̃j̃ j 11,t11 ,

~21!

where s̃5s/ADxDt. Writing Eq. ~21! in continuous nota-
tion,
02611
l

-
P.
l

rt

-

-

w~x1Dx,t1Dt !5S 12
Dx

l Dw~x,t1Dt !1S 12
Dt

t D
3w~x1Dx,t !2S 12

Dx

l D S 12
Dt

t D
3w~x,t !1

DxDt

lt
j~x1Dx,t1Dt !,

~22!

we have replaceds̃ j̃ j ,t→j(x,t) in complete analogy with
the rescaling for the temporal OUP. The autocorrelation
the spatiotemporal Gaussian white noise
^j(x,t)j(x8,t8)&5s2d(x2x8)d(t2t8).

B. Continuous approach

1. Generalized Langevin equation

An alternative approach starts from a generalized Lan
vin equation in 111 dimensions, the stochastic PDE

S 11t
]

]t
1l

]

]x
1lt

]2

]x]t Dw~x,t !5j~x,t !, ~23!

which for l50 reproduces the Langevin equation~2! gener-
ating the temporal OUP and fort50 that of the spatial OUP
The spatiotemporal Gaussian white noise can be conce
as the productj(x,t)5j(x)j(t), wherej(x) and j(t) de-
note independent spatial and temporal Gaussian white no
respectively.

It is interesting to note that Eq.~23! is a hyperbolic PDE,
whereas Eq.~1! is a parabolic one. Equation~23! has the two
families of characteristicsx5const andt5const, the latter is
the only family of characteristics of Eq.~1!. Correspond-
ingly, the solution of Eq.~1! reproduces in the limitl→0 the
temporal OUP multiplied byd(x2x8) but t→0 does not
result in the spatial OUP; see below.

The stochastic PDE~23! can be obtained from the con
tinuous differential algorithm~22! by Taylor expansion ofw
for small Dx and Dt and performing the limitDx,Dt→0.
Alternatively, it can be conceived as the product of the t
Langevin equations for a temporal OUP, Eq.~2!, and its spa-
tial analog. For this we denote the product of the tempo
and spatial OUPs byw(x,t) and observe that the differentia
operator on the lhs of Eq.~23! factorizes as (11t]/]t
1l]/]x1lt]2/]x]t)5(11t]/]t)(11l]/]x).

Using a separation ansatz, a solution of Eq.~23! can be
written as

w~x,t !5 f ~x!g~ t !, ~24!

where

f ~x!5 f 0e2(x2x0)/l1
A

l
e2x/lE

x0

x

dW~y!ey/l, ~25!

g~ t !5g0e2(t2t0)/t1
1

At
e2t/tE

t0

t

dW~s!es/t, ~26!
6-3
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and f (x0)5 f 0 and g(t0)5g0 denote boundary and initia
values. The initial and boundary processesw(x,t0) and
w(x0 ,t) are OUPs with correlation lengthl and correlation
time t, respectively. Note the appearance of the extra fac
A and 1/A in Eqs.~25! and~26! respectively, compared with
the process given by Eq.~4!. 0,uAu,` is an arbitrary con-
stant that corresponds to the separation constant for a d
ministic PDE. In the nonstationary case it weights the re
tive influence of the initial and boundary realizations. In t
terms ofw(x,t) which survive in the stationary case,A can-
cels and naturally its value plays no role, see below.

Exploiting that the spatial and temporal Wiener proces
W(y) and W(s) are independent and have zero mean,
obtain the autocorrelation function

Kw~x,t;x8,t8!5
s2

4tl
e2ux2x8u/l2ut2t8u/t

1
s t

2

2t S ^ f 0
2&

1

A2
2

ss
2

2l De2(x1x822x0)/l2ut2t8u/t

1
ss

2

2l S ^g0
2&A22

s t
2

2t De2ux2x8u/l2(t1t822t0)/t

1S ^ f 0
2&

1

A2
2

ss
2

2l D S ^g0
2&A22

s t
2

2t D
3e2(x1x822x0)/l2(t1t822t0)/t. ~27!

The first term on the rhs is just the desired stationary
homogeneous autocorrelation, independent on the boun
and initial conditions, see Eq.~13!. The remaining terms dis
appear forx0→2` and t0→2`, respectively. A second
possibility to make the nonstationary and nonhomogene
terms vanish is to choosef 0 andg0 as zero mean Gaussia
distributed with variance such that

^ f 0
2&5

ss
2

2l
A2 and ^g0

2&5
s t

2

2t

1

A2
. ~28!

In this case the process will be homogeneous and statio
from the beginning. The variance of the processw is inde-
pendent of (x,t), ^w2(x,t)&5^ f 0

2&^g0
2&5s2/4lt.

2. Generalized Fokker-Planck equation

The Fokker-Planck equation~FPE! corresponding to a
stochastic PDE should be a functional equation. For the s
tially discretized system the FPE is a matrix equation.
will derive for this case the generalized FPE and its stati
ary solution. Discretizing Eq.~23! using a first-order Euler
scheme gives the system of ordinary differential equation

tCdw~ t !52Cw~ t !dt1
ss

ADx
dW~ t !, ~29!

where w5(w1 , . . . ,wN)T and W5(W1 , . . . ,WN)T. The
matrix C has the nonvanishing elements
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ci ,i5c0511
l

Dx
, ci 11,i5c152

l

Dx
. ~30!

Since detCÞ0, we can multiply Eq.~29! by C21 and obtain

tdw~ t !52w~ t !dt1
ss

ADx
C21dW~ t !. ~31!

Now we can treat the system as a multivariate OUP. It can
shown@18# that the corresponding FPE is

]

]t
p52(

i

]

]w i
(

j
F2

1

t
d i j w j p

2
ss

2s t
2

2t2Dx
„C21~C21!T

…i j

]

]w j
pG

52(
i

]

]w i
Ji52“wJ, ~32!

wherep5p(w,tuw0 ,t0) is the transition probability density
and J is the hereby defined probability current density. W
note that in our caseC21(C21)T5(CTC)21.

A stationary solution of Eq.~32!, meansJ5const. For
natural boundaries where the probability current vanishes
have

Ji5(
j

F2
1

t
d i j w j ps2

s2

2t2Dx
~CTC! i j

21 ]

]w j
psG50.

~33!

From Eq.~33! we get

]

]w l
ln ps5(

j
F2

2tDx

s2
~CTC! l j w j G . ~34!

Now the nonvanishing elements ofCTC can be computed
from Eq. ~30! as

~CTC! i ,i5c0
21c1

2 , ~CTC! i ,i 615c0c1 . ~35!

As the right-hand side of Eq.~34! is a gradient (CTC is
symmetric!, the potential conditions are fulfilled and
simple integration gives

ps~w!5N expF2
tDx

s2
wTCTCwG , ~36!

whereN is the normalization factor.CTC is an oscillation
matrix @28# with the positive eigenvalues

L j5112S l

Dx
1

l2

Dx2D F12cosS p j

N11D G . ~37!

Thus the stationary solution can be normalized,N
5) j 51

N s(ptDxL j )
21/2, and the stationary probability den

sity is indeed the zero mean Gaussian distribution~36!.
6-4
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FIG. 1. Autocorrelation of the generalized OUP in 111 dimensions normalized by the variances̃2/4lt. Comparison of analytical and
numerical results for~a! fixed temporal (t5t85100) and~b! fixed spatial (x5x85100) argument. The lines show the analytic results fro
Eq. ~27!, the symbols are the results of simulations~squares,l5t5100; triangles,l550, t580). Stationarity was ensured imposing th

corresponding initial and boundary processes, see text. Averages over 105 realizations (N51000, s̃51, Dx5l/100, Dt5t/100).
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C. Comparison with numerics

We compare the analytically given autocorrelation w
numerically generated data obtained with the discrete i
gral algorithm provided by Eq.~20!. Figure 1 shows a good
agreement for fixed temporal and fixed spatial argument,
spectively, imposing initial and boundary conditions whi
ensure stationarity and homogeneity as described above

We also determined the mean square deviation of the v
ance of averages over 105 independent realizations which
governed by thex2 distribution. The variance was alway
found within a 80% confidence interval.

IV. THE APPROACH OF GSR IN 1 ¿1 DIMENSIONS

The above proposed generalization of the OUP hasby
constructionautocorrelations decaying exponentially in bo
space and time. This is in contrast with the spatiotempo
correlated noise proposed by GSR@13#. Since the autocorre
lation for 111 dimensions in real space was not explici
calculated in the previous literature, below we consider t
case. Again, we derive the result in a continuous appro
and in a spatially discretized scheme and compare the
lytical results with numerical data. The autocorrelation
real space for spatial dimensiond>2 is evaluated in a dif-
ferent context in Ref.@29#. In reciprocal space, the result
given for generald in Refs.@12,19#, cf. also Ref.@20#.

A. Continuous approach

We start with the Fourier transform of Eq.~1! in d51,
which reads

t
]

]t
w~k,t !52c~k!w~k,t !1j~k,t !, ~38!

wherec(k)511l2k2 andj(k,t) is the Fourier transformed
white noise with autocorrelation

Kj~k,t,k8,t8!52ps2d~k1k8!d~ t2t8!. ~39!

Equation~38! defines an OUP for eachk. It has the genera
solution
02611
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w~k,t !5e2c(k)t/tw~k,0!1
1

t
e2c(k)t/tE

0

t

dsj~k,s!ec(k)s/t.

~40!

Stationarity and homogeneity are ensured if the initial valu
have the autocorrelation

Kw~k,0;k8,0!5
s2

2t

2p

c~k!
d~k1k8!, ~41!

as for the Fourier transform of a spatial OUP with varian
s2/4tl. The autocorrelation function in the stationary a
homogeneous case is

Kw~k,t;k8,t8!5
s2

2t

2p

c~k!
d~k1k8!e2c(k)ut2t8u/t, ~42!

which is up to constant factors in accordance with Re
@12,19#. Inverse Fourier transform gives

Kw~x2x8,t2t8!5
s2

2t

1

2pE2`

`

dk
1

c~k!

3e2c(k)ut2t8u/t2 ik(x2x8), ~43!

where we introducedKw(x2x8,t2t8)5Kw(x,x8;t,t8). To
calculate the integral on the right-hand side of Eq.~43! we
introduce k̃5lk and c̃( k̃)511 k̃25c(k) and note thatKw

depends only onr5(x2x8)/l and s5ut2t8u/t. For s50
one readily obtainsKw(r,0)5s2/4tle2uru. In the general
case we observe that the derivative of Eq.~43! with respect
to s reduces to the Fourier transform of a Gaussian

]Kw~r,s!

]s
52

s2

2tl

1

2pE2`

`

dk̃e2 c̃( k̃)s2 i k̃r

52
s2

4tl

1

Aps
e2s2r2/4s. ~44!

Integration with respect tos gives
6-5
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Kw~r,s!52
s2

4tl

1

Ap
E

s0

s

ds8
1

As8
e2s82r2/4s8

52
s2

4tl

2

Ap
E

As0

As
dye2y22r2/4y2

52
s2

4tl

1

2 FererfS y1
r

2yD1e2rerfS y2
r

2yD G
As0

As

,

~45!

where erf (x)52/Ap*0
xdt e2t2 is the error function. In the

limit s→` the autocorrelation should vanish, hence

Kw~r,s!52 lim
s0→`

s2

8tl

3H erFerfS As1
r

2As
D 2erfS As01

r

2As0
D G

1e2rFerfS As2
r

2As
D 2erfS As02

r

2As0
D G J .

~46!

The limit s0→` should be carefully taken. If we are inte
ested in the limitl→0 or in the asymptotics for larger, the
corresponding operation has to be done befores0→`. The
limit l→0 of Eq. ~46! leads to

Kw~s,x2x8!5
s2

2t
d~x2x8!e2s ~47!

as expected. Evaluating first the limitt→0 of Eq. ~46! re-
sults in

Kw~ t2t8,r!5
s2

4l
d~ t2t8!~11uru!e2uru. ~48!

Independent on the order of the limits, we obtain for bothl
andt→0 the result for spatiotemporal Gaussian white no
Kw5s2d(x2x8)d(t2t8) which can be also directly inferre
from Eq. ~1!.

The asymptotics forr@1 ands5constÞ0 and, alterna-
tively, for s@1 andr5const, is obtained employing erf(z)
;6121/Apze2z2

for z→6`, cf., e.g., Ref.@30#, as

Kw~r,s!;
s2

4tl
As

p

e2r2/4s

s2r2/4s
e2s. ~49!

For s!1 and r5constÞ0 one obtains, from Eq.~46!,
after first doings0→` and employing again the asymptotic
of erf(z),

Kw~r,s!;
s2

4tl H e2uru1As

p

e2r2/4s

s2r2/4s
e2sJ , ~50!
02611
e

where the second term on the right-hand side vanishes
s→0.

For r!1 and s5constÞ0 expanding erf(As6r/2As)
ande6r one obtains from Eq.~46!, independent of the orde
of the limits, up to second order inr,

Kw~r,s!'
s2

8tl H ~12erfAs!~21r2!2
r2

Aps
e2sJ .

~51!

The limit t→0 leads to Kw(r,s)5s2/(4l)d(t2t8)(1
2r2/2) in accordance with the expansion of Eq.~48! for
small r. Using the asymptotics 12erfAs;e2s(1
21/2s)/Aps for large s one obtains Kw

;s2/(4tlAps)e2s(12r2/4s) which agrees with the ex
pansion of Eq.~49! for small r.

The autocorrelation function should solve the equat
obtained by multiplying Eq.~1! with w(x8,t8) and averag-
ing,

t
]

]t
Kw~x2x8,t2t8!52~12l2D!Kw~x2x8,t2t8!

1Q~ t82t !
s2

2tl

1

Aps
e2s2r2/4s,

~52!

which is fulfilled by Eq.~46!. In the limit l→0 the inhomo-
geneity reduces to that of Eq.~7! multiplied by d(x2x8) as
it should be. In the limitt→0 the inhomogeneity of Eq.~52!
becomess2/(2l)d(t2t8)e2uru @31# which can be also di-
rectly derived.

Sanchoet al. @22# claimed that the decay of correlations
exponentially dominated in both space and time. The ab
results show that this is generally not the case ford51; see
Ref. @33#.

B. Spatially discretized scheme

Garcı́a-Ojalvoet al. @13# calculated the autocorrelation o
the GSR process ford52 in discrete space. Here we repe
the procedure ind51 to compare it with the continuou
case. The spatially discretized version of Eq.~1! reads

t
]

]t
w j~ t !52w j~ t !1l2Dw j~ t !1j j~ t !, ~53!

where the Euler discretization of the Laplacian is

Dw j~ t !5
1

Dx2
@w j 11~ t !22w j~ t !1w j 21~ t !#. ~54!

In discrete space we have to rescale the white noise acc
ing to

^j j~ t !j j 8~ t8!&5
s2

Dx
d j , j 8d~ t2t8!. ~55!
6-6



ier
of Eq.

GENERATION OF SPATIOTEMPORAL CORRELATED . . . PHYSICAL REVIEW E69, 026116 ~2004!
FIG. 2. Autocorrelation~normalized by the variance! of the GSR process in 111 dimensions. Comparison of simulations in finite Four
space~periodic boundary conditions! with analytical results in discrete and continuous space. Squares denote results of simulations
~53! with additional Euler discretization of time. Triangles are the analytical result in discrete space given by Eq.~62!. ~a! shows the spatial
dependence after a transient periodt5t851000. The solid line is the plot ofKw(r,0)5s2/4tl(e2r1er2NDx/l) which solves Eq.~52! for
periodic boundary conditions att5t8. The dashed line is the plot of the result for the infinite system,Kw(r,0)5s2/4tle2r, which coincides
with the generalized OUP, cf. Eq.~13!. ~b! shows the temporal dependence forx5x8532. Here, the solid line is the plot ofKw(0,s)
5s2/4tl(12erfAs), cf. Eq. ~51!. The dashed line is again the result for the generalized OUP, cf. Eq.~13!. Averages over 105 realizations

(N564, s̃51, Dx5Dt51, l510, andt520).
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Again, as in the continuous case, we Fourier transform, so
the decoupled equations, and calculate the autocorrela
function. We define the discrete Fourier transform on
spatial lattice as

wm~ t !5Dx (
j 50

N21

ei (2p/N)m jw j~ t !. ~56!

Hence the inverse Fourier transform is given by

w j~ t !5
1

NDx (
m50

N21

e2 i (2p/N)m jwm~ t !. ~57!

Greek indices are used in Fourier space and Latin indice
real space. The indices run from 0 toN21 in both real and
Fourier space; due to periodic boundaries,2m has to be
interpreted asN2m. Now we can Fourier transform Eq
~53!,

t
]

]t
wm52cmwm~ t !1jm~ t !, ~58!

where

cm5122
l2

Dx2 FcosS 2pm

N D21G . ~59!

The autocorrelation function of the Fourier transform
white noise is

^jm~ t !jm8~ t8!&5s2NDxdm,2m8d~ t2t8!. ~60!

As in continuous space, Eq.~58! defines an Ornstein
Uhlenbeck process with autocorrelation timet/cm for each
m. The stationary autocorrelation can be computed in co
plete analogy to continuous space as the inverse Fou
transform of
02611
e
on
e

in

-
ier

Km,m8
w

~ t2t8!5
s2

2t

NDx

cm
dm,2m8e

2cmut2t8u/t. ~61!

Hence the stationary autocorrelation in discrete space is

K j 2 j 8~ t2t8!5
s2

2t

1

NDx (
m50

N21
1

cm
e2cmut2t8u/t2 i (2p/N)m( j 2 j 8).

~62!

Since cm5cN2m , the imaginary part of the sum vanishe
For ut2t8u/t@1 the autocorrelation is dominated by the fir
term e2ut2t8u/t in the sum (m50). However, this is not so
for ut2t8u't, cf. Fig. 2~b!.

ObservingNDx5L, L being the system size, and ident
fying k52pm/L, we have in the limitDx→0 the correspon-
dencecm→c(k)511l2k2. Hence Eq.~61! corresponds to
Eq. ~42! and Eq.~62! to Eq. ~43! after doing the limitL
→` in an appropriate way.

C. Comparison with numerics

The initial conditions for a stationary field in Fourie
space were chosen as independent Gaussian random num
with variances2(NDx)2/tcm for eachm. The spatial auto-
correlation was computed using the correlation theorem~cf.,
e.g., Ref.@34#! valid for weak stationary ergodic processe

F@^g~x0!g~x01x!&#5F@g~x!#F@2g~x!#, ~63!

whereF@g(x)# denotes the Fourier transform ofg(x). The
procedure is faster in numerical simulations and gives
same results as the real-space approach; moreover, th
verse Fourier transform can be avoided if one is interes
only in spatial correlations.

Figure 2 compares numerical and analytical results for
GSR process in 111 dimensions.

Simulations in real space give results that coincide w
those in Fourier space; we refrain from demonstrating t
here. A simulation in real space has the disadvantage tha
6-7
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TRAULSEN, LIPPERT, AND BEHN PHYSICAL REVIEW E69, 026116 ~2004!
maximal possible time stepDt is restricted by Dt
,tDx2/4l2, which enforces a smallDt, otherwise the dis-
crete Eq.~53! loses stability; cf. Ref.@13#. Simulations em-
ploying periodic boundary conditions or stochastic boun
aries with exponentially decaying autocorrelation indic
that the GSR process does not depend on the boundary
ditions if we are not too close to the boundaries.

V. CONCLUSIONS

We introduced in 111 dimensions a spatiotemporal st
chastic process with an autocorrelation exponentially dec
ing both in space and time, thus being a generalization of
OUP. An analogous generalization to higher spatial dim
sions, although formally possible, seems physically
meaningful, as the autocorrelation function would factor
in the spatial variables. Instead, for higher dimensions
spatial part of the autocorrelation function should only d
pend on the spatial distance. In addition, the construction
a higher-dimensional process with exponentially decay
autocorrelation should relay to that of the common OUP.
the relativistic OUP@35# a similar situation appears alread
in 111 dimensions: The spatiotemporal autocorrelation
s

ys

Fo

02611
-
e
on-

y-
e
-
t

e
e
-
of
g
r

s

not allowed to factorize as space and time are intimat
connected.

The situation resembles that of the checkerboard proc
in 111 dimensions@36–39# driven by a velocity changing
randomly the sign which is modeled by the simplest discr
process with exponentially decaying autocorrelation, the
chotomous Markovian process. The checkerboard proce
related to the Dirac equation or the Klein-Gordon equation
d51. Also, there the generalization to higher spatial dime
sions meets nontrivial difficulties@37,38#.

Note that there exists a numerical method, viz., the F
rier filter method, which allows one to generate noise
arbitrary autocorrelation provided its Fourier transform e
ists @2#. In this paper we are however interested in a co
structive approach close to that for the OUP employing s
chastic differential equations.
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