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Generation of spatiotemporal correlated noise in #1 dimensions
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We propose a generalization of the Ornstein-Uhlenbeck process indimensions which is the product of
a temporal Ornstein-Uhlenbeck process with a spatial one and has exponentially decaying autocorrelation. The
generalized Langevin equation of the process, the corresponding Fokker-Planck equation, and a discrete inte-
gral algorithm for numerical simulation are given. The process is an alternative to a recently proposed spa-
tiotemporal correlated model procelsk Garca-Ojalvo et al, Phys. Rev. A46, 4670(1992] for which we
calculate explicitly the hitherto unknown autocorrelation function in real space.
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[. INTRODUCTION diffusion systemgsee, e.g., Ref.18]), and within a gener-
ating functional approacfiL2].

Noise induced phenomena are subject of considerable re- In this paper we propose an alternative spatiotemporal
cent attentiorj1,2]. After considering in the early phase sys- generalization of the OUP in#1 dimension which is sim-
tems with only few degrees of freeddr] in the last decade ply the product of a temporal OUP with a spatial one and has
the effects of noise in spatially distributed systems have beeexponentially decaying autocorrelation. To make the paper
investigated 2]. In this context stochastic model processesself-contained and to introduce the notation that is used in
are necessary to mimic spatiotemporal fluctuations of differthe sequel, we shortly recall in Sec. Il basic properties and
ent origin. If characteristic time and length scales of the sysnumerical generation of the common OUP in dteamporal
tem and noise are clearly separated, the use of a spatiotemiimension. The scaling necessary when transforming be-
poral Gaussian white noise may be justified, but it can alsdween discrete and continuous formulations is carefully dis-
lead to spurious resul{8—5]. There are physical situations cussed. In Sec. Il the generalized OUP is constructed inde-
where the characteristic scales are not well separated, e.g.,frendently within a spatially discretized scheme and in a
externally driven systemfG], or where the square of the continuous version as the solution of a stochastic PDE dif-
driving stochastic process is involved. Both hold in electro-ferent from Eq.(1). Subsequently, conditions that ensure sta-
hydrodynamic convection in nematic liquid crystalsee, tionarity and homogeneity are discussed, the generalized
e.g., Ref.[7]), driven by external stochastic electric fields Fokker-Planck equation and its stationary solution are given,
[8,9]. Further examples are the influence of spatiotemporahnd numerically generated data are compared with the ana-
colored noise on spatiotemporal chaos modeled by the contytic results. In Sec. IV the autocorrelation function of the
plex Ginzburg-Landau equatidd0] and on networks of ex- GSR process is explicitly calculated in real spacedferl in
citable systems displaying spatiotemporal stochastic resddoth continuous and discrete formulations and compared
nance[11]. This sufficiently motivates to model correlated with numerical results. Previous work studied the behavior in
spatiotemporal fluctuations. For an approach based on differeal space only for spatial dimensiods-2 [13,19 andd
ent grounds see, e.g., R¢L2]. =3 [19]; see, however, Ref20]. Contrary to conventional

A frequently used spatiotemporal correlated model pro-outlook[10,22, the autocorrelations of the GSR process de-
cess was introduced by GaseDjalvo, Sancho, and Ramirez- cay not exponentially but in a more intricate way.

Piscina(GSR [13] who considered in spatial dimensiah Problems connected with the generalization to higher di-
r e RY the stochastic partial differential equatiRDE) mensions are briefly discussed in the concluding section.
J 2
T e ==(1=NAQ)e(r, )+ £, (1) Il. THE ORNSTEIN-UHLENBECK PROCESS

- o . . L The OUP is the only stationary Gaussian Markov process
where the additive driving proceggr,t) is Gaussian distrib- |, .+ exponentially decaying autocorrelatig®oob's theo-

uted with zero meanzand W',th auto<,:0rrelat|&ﬁ(r,t;r’,t’) rem[23]). Realizationsy(t) of the OUP can be generated by
=€ ) =o5(r—r’)5(t—t"). o solving the Langevin equation

The heuristics of Eq(1) is evident: the diffusive term
effectively reduces the lifetime of Fourier components with
wavelengths short compared g see also below. Fok d
=0 it reduces to the Langevin equation defining the common Tdt 7)==+, 2
temporal Ornstein-Uhlenbeck proce€8UP) [14-16. The
solutions are thus, in a sense, generalizations of the OUP.
Equation(1) belongs to a class of stochastic PDEs for whichwhere &£(t) is a Gaussian white noise withé(t)&(t'))
existence and uniqueness of the solution are proven rigor=o?8(t—t'). In a mathematically precise form, EqR)
ously [17]. It is discussed also in the context of reaction-reads
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rdy(t) = — (t)dt+dW(t), 3) At
+EtHAD. (1)

At
77(t+At)=7](t)(1—7
where W is a Wiener process with{W(t)W(t"))

=ot2min(t,t’); note dW(t)/dt=£(t). Solving Eg.(3) with The discrete version of Eqll) is obtained using the
initial condition 7(to) = 7o gives above notation and replacirgt) by o, /JAt. This ensures
1 t the correct autocorrelation in the continuum limit observing
n(t)=noe” -t/ ;eftlr dW(s)e¥”, 4) IlmAHOém,/At= S(t—t') and amounts to a rescaled vari-

. -
0 anceo?= o/ At,

which has the autocorrelation At

5 M+1= 77t< 1- e

e (t+t'—2tg)/7 ﬁe—h—t/\/r.
27

At -
+70't§t+1- (12

2
2y Tt
<770> 27

(n(t)n(t"))=

All results are consistent: Eq11) can be derived from Eq.
5 (2) using an Euler discretization, and Eq2) from Eq.(10)

. . I by a Taylor expansion of the coefficients.
The process becomes stationary if the initial values arey y P

Gaussian distributed with zero mean and variamgir, or
in the limit t,t" —oo, or fortg— —; it is then the OUP. We
denote the stationary part of the autocorrelation function as In this section we generalize the OUP and construct in 1
+1 dimensions a spatiotemporal random fiel¢k,t) with
reasonable properties. For fixedhe process should be the
common temporal OUP described above and for fiked
spatial OUP. It is reasonable to require translational invari-
Naturally, K”(t—t’) solves the inhomogeneous equationance, analogous to temporal stationarity, of all averages and
which is obtained by multiplying Eq(2) by #(t) given by  an exponential decay of the spatiotemporal autocorrelation

Eq. (4) and [
@ (4) and averaging Ke(Xx=x"t=t")=(e(x,) (X' ,t"))

Ill. AGENERALIZATION TO 1 +1 DIMENSIONS

2
o ,
K”(t—t’)=2—;e’“’t I, (6)

TEK’I(t—t’)z—K”(t—t’)+®(t’—t)U—Ze*("*t)’T o —x=x"|IN=[t—t"|/
dt T ' =t (13
(7)
whereo= o4, ogand\ characterizing for fixed time the
spatial process.
1 At We propose two independent schemes leading to the same
p(t+At)=n(t)e 274 _ef(t+At)/rJ' dW(s)ed", result. First we employ a spatially discrete scheme to con-
T t struct more general spatiotemporal correlated processes
(8)  given in Ref.[26]. Alternatively, we consider a linear sto-
) ) ~ chastic PDE different from Ed1) driven by additive Gauss-
where the last term on the right-hand sides) is a stochastic  jan spatiotemporal white noise and show that its stationary
increment. The increments in nonoverlapping time intervalspjutions are Gaussian distributed and have the desired prop-

are obviously independent; they have zero mean and thgrties. The analytic results are corroborated by numerical
variance, see, e.g., Rg¢4], data.

Given the valuey(t) we can obtainp(t+ At) as

2
ﬂ(l— e 2At/7') (9) A. Recursive generation
27 '

We consider the field(x,t) on equidistant lattice sitds
i=0,... N, adopting the notatiorp;(t) = ¢(iAX,t). In the
first step of construction we generate spatially independent
OUPs 7;(t) using a standard algorithm, e.g., Rdf24,27),
with autocorrelation

Introducing the notatiom,= n(tAt), whereAt is fixed and
t=...,—1,0,1 ..., oneobtains, for every choice aft, an
exact recursion relation for equidistant discrete tinidis-
crete integral algorithin

2

o )
K=t =(mO )=z "8, 14
0- y
Teey= e T \/z;mtﬂl (10 i i j aNT i
T
We then, as proposed in RER6] to construct a more general

WhereEt are independent zero mean Gaussian random nun,?patiotemporal correlated noise, superpose these processes

bers with variance 1, cf. Ref25]. i
For small At a Taylor expansion of the rhs of E(B) oi(t)= E aemdt), 1=0,...N. (15)
leads to k=0
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Since this expression is linear i, also thep; are Gauss-

ian distributed with zero mean. Requiring that the spatial

autocorrelation is the discrete version of Ef3) for equal
times,

min(i,j)

2
(o .
K= 2 ayay{md?) =z e I8, (16

determines the coefficientsy . It is easy to check that

ajkzef(jfk)Ax/)\(m)lff‘)‘kvo, (17)

where j=0,... N and k=0, ... .
cients, we write

Using these coeffi-

(Pj(t):e—jAX/)\no(t)+e—(j—1)AX/)\ ll_e—ZAxh\,’]l(t)_l_ .

+ \/1—e*73X3”77j(t). (18
With the corresponding formula fap; . 4(t), we find
o= et +\1-e g (1), (19

where 7, 1(t) are the spatially independent random num
bers specified above, each of which being a temporal OU

algorithm (10) for the temporal process.

In discrete notation both for space and time we inserl

7j+10+1 from Eq. (10), after replacingo/\27— o/ 47X,
into Eq. (19) (written for ¢;,1,44), and obtain finally

_ - AxI —AU —At/r—Ax/
Cjr1+1=€ TNyt e e —e ST gy
g -~
—2AXIN —2A7
+yl-e ¥ 1-e i SESTEST
VATN
(20)

Where<~§i,f§'j’t,>= d; jorv - For simulations, this discrete in-

PHYSICAL REVIEW €9, 026116 (2004
At
1_ -
T
AX

o=

AX
1__

o(X+AX,t+At)= X

) o(X,t+At)+

Xo(X+Ax,t)—|1——|| 1— —

T

|

AxAt
X @(X,t)+ TE(X+ AXx,t+At),
(22)

we have replacedé; ,— £(x,t) in complete analogy with
the rescaling for the temporal OUP. The autocorrelation of
the  spatiotemporal  Gaussian  white  noise is

(E(X ) EX )= 025(x—x’) S(t—t').
B. Continuous approach

1. Generalized Langevin equation

An alternative approach starts from a generalized Lange-
vin equation in &1 dimensions, the stochastic PDE
(92

L
tr—+
ot

J
+NT

A v (23

ot SR = £,

which for A\ =0 reproduces the Langevin equati@ gener-
ating the temporal OUP and fer=0 that of the spatial OUP.

Ig’he spatiotemporal Gaussian white noise can be conceived

fi‘s the product(x,t) =&(x)&(t), whereé&(x) and &(t) de-
note independent spatial and temporal Gaussian white noise,
espectively.

It is interesting to note that E@23) is a hyperbolic PDE,
whereas Eq(1) is a parabolic one. Equatid23) has the two
families of characteristics= const and = const, the latter is
the only family of characteristics of Eq1). Correspond-
ingly, the solution of Eq(1) reproduces in the limik — 0 the
temporal OUP multiplied bys(x—x") but 7—0 does not
result in the spatial OUP; see below.

The stochastic PDE23) can be obtained from the con-
tinuous differential algorithni22) by Taylor expansion ob
for small Ax and At and performing the limitAx,At—0.
Alternatively, it can be conceived as the product of the two
Langevin equations for a temporal OUP, E2), and its spa-

tegral algorithm is preferable since by construction it is cor-tial analog. For this we denote the product of the temporal

rect for any choice ofAx andAt.

Expanding the coefficients in EG20) for small Ax and
At, a first-order discrete differential algorithm, the generali-
zation of Eq.(12), is obtained,

AX At
Pj+1t+1— 1_T ‘Pj,t+1+ 1_7 Pj+1t
AX At AXAt_-
- 1_T 1—7 (Pj,t+T0'§j+l,t+1y
(21

where o= o/ /AxAt. Writing Eq. (21) in continuous nota-
tion,

and spatial OUPs by(x,t) and observe that the differential
operator on the lhs of Eq(23) factorizes as (¥ 7d/dt
+Nal ax+ N 791 9xat) = (1+ 79l 3t) (L+ Nl ).
Using a separation ansatz, a solution of E2B) can be
written as
e(x,H)=f(x)g(t), (24)

where

A X
f(x)=f0e—<X—Xo>’*+Xe—mf dW(y)e", (25
X0

t
dW(s)e¥,

to

1
g(t)=goe 0T+ et (26)
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and f(xg)=fy and g(tg) =g denote boundary and initial N

values. The initial and boundary processeéx,t,) and Cii=Co=1+ o Ci+2i=C1=~ 1 (30

o(Xp,t) are OUPs with correlation length and correlation

time 7, respectively. Note the appearance of the extra factorgince deC+0, we can multiply Eq(29) by C~* and obtain

A and 1A in Egs.(25) and(26) respectively, compared with

the process given by E¢4). 0<|A| < is an arbitrary con- os

stant that corresponds to the separation constant for a deter- rde(t) = — @(t)dt+—C 1 dW(t). (31

ministic PDE. In the nonstationary case it weights the rela- VAx

tive influence of the initial and boundary realizations. In the

terms ofp(x,t) which survive in the stationary casg&,can-

cels and naturally its value plays no role, see below.
Exploiting that the spatial and temporal Wiener processes P P 1

W(y) and W(s) are independent and have zero mean, we —p=—2 — > {— ~8j@;p

obtain the autocorrelation function Jt T 0@ 7]

Now we can treat the system as a multivariate OUP. It can be
shown[18] that the corresponding FPE is

o2 2 12 J
K“’(X,t;x’,t’)—me [x=x"|IN=t=t"|IT _ . S (C l(C l)T)IJ
A
2 2
1 o5 1%
ot 2 (x+x"=2xg)N—|t—t'|/7 —Ji=- V. J, 32
T e 2>\)e ’ =2 5= Ve 32

2 o o? " oy, where p=p(e,t|¢g,to) is the transition probability density
ton (9o)A”— > e X It = 2tg)l 7 andJ is the hereby defined probability current density. We
note that in our cas€ }(C"1)T=(Cc"C) L.

g Uf A stationary solution of Eq(32), meansJ=const. For
(f3) ORI (g3)A— 5. natural boundaries where the probability current vanishes we
have
x @~ (xH X = 2xQ)N = (t+1 ~2tg)/ 7 27) Z { .2 5
Ji= ¢iPs— = —(C'C);;*——ps|=0.
The first term on the rhs is just the desired stationary and ] % #1Ps 272AX ST

homogeneous autocorrelation, independent on the boundary (33
and initial conditions, see E@L3). The remaining terms dis-

appear forx,— —% and ty— —c, respectively. A second From EQ.(33) we get
possibility to make the nonstationary and nonhomogeneous

terms vanish is to choosg andg, as zero mean Gaussian iln pe= 2 _ ZTAX(CTC)HD, . (34)
distributed with variance such that dgp 0 g a? e
o2 ) 2 Now the nonvanishing elements &'C can be computed
(o= 2)\A and (g§)= 27A2 (28)  from Eq.(30) as
(CTC)ji=citci, (CTC)je1=CoCi. (39

In this case the process will be homogeneous and stationary

from the beginning. The variance of the procgsss inde-  As the right-hand side of Eqi34) is a gradient C'C is
pendent of ,t), (@(x,t))=(f5)(g5)= /4N T. symmetrig, the potential conditions are fulfilled and a
simple integration gives
2. Generalized Fokker-Planck equation
The Fokker-Planck equatiofFPE) corresponding to a _ TAT
stochastic PDE should be a functional equation. For the spa- pS(‘O)_NeX’{ g2 C'Co|,
tially discretized system the FPE is a matrix equation. We
will derive for this case the generalized FPE and its stationwhere A/ is the normalization factoiC'C is an oscillation
ary solution. Discretizing Eq23) using a first-order Euler matrix [28] with the positive eigenvalues
scheme gives the system of ordinary differential equations,
1 cos( il
7Cde(t) = — Cep(t)dt+ —dW(t), (29 N+1

VAX
Thus the stationary solution can be normalized]
where ¢=(¢1, ....on)" and W=(Wy, ... Wy)". The =II}L;0(7rAxA;)" Y2 and the stationary probability den-
matrix C has the nonvanishing elements sity is indeed the zero mean Gaussian distributi®s).

(36)

)\2

Aj:1+2 H'f'—

(37
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FIG. 1. Autocorrelation of the generalized OUP ir-1 dimensions normalized by the variane&4x 7. Comparison of analytical and
numerical results fota) fixed temporal {=t"=100) and(b) fixed spatial k=x'=100) argument. The lines show the analytic results from
Eq. (27), the symbols are the results of simulatidsguares\ = r=100; triangles\ =50, 7=80). Stationarity was ensured imposing the

corresponding initial and boundary processes, see text. Averages Gvaalifations = 1000, =1, Ax=\/100, At=7/100).

C. Comparison with numerics

— a—c(k)t/r 1 —c(k)t/r ! c(k)s/7
We compare the analytically given autocorrelation with o(kt)=e M e(k,0)+ ;e v fodsg(k,s)e o
numerically generated data obtained with the discrete inte- (40)
gral algorithm provided by Eq20). Figure 1 shows a good
agreement for fixed temporal and fixed spatial argument, reStationarity and homogeneity are ensured if the initial values
spectively, imposing initial and boundary conditions which have the autocorrelation
ensure stationarity and homogeneity as described above.
We also determined the mean square deviation of the vari- o2 2
ance of averages over 1hdependent realizations which is K#(k,0'k",0)= 5 —5 o(k+K), (41)
P ; 7 ¢(k)
governed by they“ distribution. The variance was always

. 0 ) :
found within a 80% confidence interval. as for the Fourier transform of a spatial OUP with variance

a?l4r\. The autocorrelation function in the stationary and

IV. THE APPROACH OF GSR IN 1 +1 DIMENSIONS homogeneous case is

The above proposed generalization of the OUP bgas
constructionautocorrelations decaying exponentially in both
space and time. This is in contrast with the spatiotemporal
correlated noise proposed by GEE3]. Since the autocorre-
lation for 1+1 dimensions in real space was not explicitly which is up to constant factors in accordance with Refs.
calculated in the previous literature, below we consider thi§12 19. Inverse Fourier transform gives
case. Again, we derive the result in a continuous approach

2

o 2w
Ke(k,t;k' t')= — ——

"N a—cK)|t—t'|/7
27 o Ak HKe (42

and in a spatially discretized scheme and compare the ana- o2 1 (= 1

lytical results with numerical data. The autocorrelation in K‘”(x—x’,t—t’)zzﬁ dkm

real space for spatial dimensia®2 is evaluated in a dif- ’°°

ferent context in Ref[29]. In reciprocal space, the result is e~ CRt—t'[I7=ik(x—x") (43)

given for general in Refs.[12,19, cf. also Ref[20].

where we introducedK¢(x—x',t—t")=K®¥(x,x";t,t"). To

A. Continuous approach calculate the integral on the right-hand side of E4B) we
We start with the Fourier transform of EL) in d=1,  introducek=\k andc(k)=1+k?=c(k) and note thak¢
which reads depends only op=(x—x')/\ ands=|t—t'|/7. For s=0

one readily obtainé(‘P(p,O):02/47-)\e*‘f’|. In the general

J _ case we observe that the derivative of E4B) with respect
Tat ek)=—cloelk b +&k, (38) to sreduces to the Fourier transform of a Gaussian
- 2)2 i i IK®(p,s) o 1 (® - o~ -
wherec(k) =1+ \“k* and &(k,t) is the Fourier transformed pys) __J dke—c®s—ikp
white noise with autocorrelation s 27\ 27 )
2
Kkt t)=2ma28(k+k')8(t—t'). (39 L s (44
47\ TS
Equation(38) defines an OUP for eadh It has the general
solution Integration with respect te gives
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1 1 where the second term on the right-hand side vanishes for
(p,s) — Sds’—e*S'*"z"‘S' s—0.
AN rls s For p<1 and s=const*0 expanding erf(s+ p/2\s)
2 5 g ande™” one obtains from Eq46), independent of the order
= 40 \/_ dye y?—pPlay? of the limits, up to second order im,
A
o’ p p - K¢(p,s)~ o (1- erf\/— (2+p2)——2e St.
=T 132 e’erf] y+§ +e Perf T2y : 87\ Jms
(51
(45)

The limit 7—0 leads to K¥(p,s)=o0?/(4\)8(t—t")(1
—p?/2) in accordance with the expansion of H¢8) for

_ X 42 . .
where erf &) 2/\/;fodte is the error function. In the small p. Using the asymptotics derfys—e (1

limit s—cc the autocorrelation should vanish, hence _1/25)/\/— for lage s one obtains K¢
o2 ~ ol (47\\Jms)e S(1— p?/4s) which agrees with the ex-
K¢(p,s)=— lim N pansion of Eq(49) for small p.

S—):x:

The autocorrelation function should solve the equation
obtained by multiplying Eq(1) with ¢(x’,t") and averag-

p p -
X1 e’ erfl s+ ——|—erf| Vso+ — g,
{ 2ys ’ st—oH
d
T—Ke(x—x'",t—t")=—(1—N?A)K?(x—x',t—t")
- p p ot
+e | erfl Vs— ——=| —erf| Vso— —=
( 2@) ( ’ 2Js_o> } 2
g 2
—s—p“l4s
(46) +Ot -5 J—e ,
The limit sp— o0 should be carefully taken. If we are inter- (52

ested in the limilk— 0 or in the asymptotics for large, the

corresponding operation has to be done befgre . The  which is fulfilled by Eq.(46). In the limit \—0 the inhomo-
limit A—0 of Eq.(46) leads to geneity reduces to that of EGZ) multiplied by 5(x—x') as
it should be. In the limit—— 0 the inhomogeneity of Eq52)
becomesa?/(2\) 8(t—t')e~!?l [31] which can be also di-
rectly derived.

Sancheet al.[22] claimed that the decay of correlations is
as expected. Evaluating first the limit-0 of Eq. (46) re-  exponentially dominated in both space and time. The above
sults in results show that this is generally not the casedferl; see

Ref. [33].

2
K‘P(s,x—x’)z(zf—Tﬁ(x—x’)e*S (47

2

g
Ke(t—t',p)=——8(t—t")(1+|p|)elrl. 48
( 2 4N ( )(L+]pD) “8) B. Spatially discretized scheme

Garca-Ojalvoet al.[13] calculated the autocorrelation of

Independent on the order of the limits, we obtain for both the GSR fad=2 in di i H t
and 7— 0 the result for spatiotemporal Gaussian white noise € process in discrete space. Here we repea

K®=a28(x—x")8(t—t’) which can be also directly inferred the procedure id=1 to compare it with the continuous

from Eq. (1). case. The spatially discretized version of Ef. reads
The asymptotics fop>1 ands=const*0 and, alterna- 9
tively, for s>1 ar;dpzconst, is obtained employing ezl( Tagoj(t)= —(pj(t)+)\2A(pj(t)+§j(t), (53
~+1-1mze ¥ for z— =+, cf., e.g., Ref[30], as
5 where the Euler discretization of the Laplacian is
0_2 \/E e P /4s
%] — I~ St
K#(p,S)~ 1 7TS—p2/4Se : (49)

1
A@j(t):E[‘PjJrl(t)_Z(Pj(t)"_(ijl(t)]- (54
For s<1 and p=const-0 one obtains, from Eq(46),

after first doings,—<c and employing again the asymptotics |, discrete space we have to rescale the white noise accord-
of erf(z), ing to

o2 o \F g Pl a?
[ _—{alp @S "N = ’
K¥p.s)~ 718 '+ 7TS—p2/4Se , (50 (&(DE&(t )= 1z 8 d—t). (55)
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(b)
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FIG. 2. Autocorrelatioinormalized by the variangef the GSR process in#1 dimensions. Comparison of simulations in finite Fourier
space(periodic boundary conditionsvith analytical results in discrete and continuous space. Squares denote results of simulations of Eq.
(53) with additional Euler discretization of time. Triangles are the analytical result in discrete space given(62) E@) shows the spatial
dependence after a transient perteet’ = 1000. The solid line is the plot df#(p,0)= c?/47\ (e~ "+ P~ N4XA) which solves Eq(52) for
periodic boundary conditions &¢=t’. The dashed line is the plot of the result for the infinite systéfi{p,0)= o-2/4r\e?, which coincides
with the generalized OUP, cf. E¢13). (b) shows the temporal dependence forx’ =32. Here, the solid line is the plot d€*(0,s)
=o?/4r\(1—erfys), cf. Eq.(51). The dashed line is again the result for the generalized OUP, c{18y.Averages over I0realizations

(N=64, 5=1, Ax=At=1, A\=10, andr= 20).

Again, as in the continuous case, we Fourier transform, solve a2 NAX ety
the decoupled equations, and calculate the autocorrelation szﬂr(t—t')=2—7 c Ou-w® cult=tlir (61)
function. We define the discrete Fourier transform on the w

spatial lattice as Hence the stationary autocorrelation in discrete space is

N—-1
N—-1
2 1

i - 1 . o
e, (H)=Ax >, eC@mNrig (1), (56) (et = TS T gt lir—ialN)u(i— )
. = : K (=)= o NAx =t CMe : '
(62)
Hence the inverse Fourier transform is given by
Sincec,=cy-,, the imaginary part of the sum vanishes.
2N For|t—t'|/7>1 the autocorrelation is dominated by the first
— — (2 ’
¢i(0=Nax =, € “eu®. (57 terme "' in the sum =0). However, this is not so
= .
for [t—t'|~r, cf. Fig. 2b).

Greek indices are used in Fourier space and Latin indices in . ObsErvingNAx= L, L being the system size, and identi-
real space. The indices run from 0 Xo-1 in both real and  1YiNg k=2mu/L, we h%"? in the limitAx— 0 the correspon-
Fourier space; due to periodic boundariesy. has to be dencec,—c(k)=1+\k". Hence Eq.(61) corresponds to

interpreted asN— . Now we can Fourier transform Eq. E9- (42) and Eq.(62) to Eq. (43) after doing the limitL
(53 — in an appropriate way.

N—-1

C. Comparison with numerics

1%
J— - +
"ot Pu CuuD)+ Eu(V), (58) The initial conditions for a stationary field in Fourier

space were chosen as independent Gaussian random numbers
where with variancec?(NAXx)?/ ¢, for eachu. The spatial auto-
correlation was computed using the correlation theotein

A2 27 e.g., Ref[34]) valid for weak stationary ergodic processes
CM:1—2—2 COE{T)—l . (59)
Ax F(G(X0)g(Xo+ X)) I=F )AL —9(x)], (63
The autocorrelation function of the Fourier transformedwhere F{g(x)] denotes the Fourier transform gfx). The
white noise is procedure is faster in numerical simulations and gives the
same results as the real-space approach; moreover, the in-
<§M(t)§#r(t’)>:0'2NAX5#’7M75(t—t/)- (600  verse Fourier transform can be avoided if one is interested
only in spatial correlations.
As in continuous space, Eq58) defines an Ornstein- Figure 2 compares numerical and analytical results for the

Uhlenbeck process with autocorrelation timke,, for each  GSR process in 1 dimensions.

u. The stationary autocorrelation can be computed in com- Simulations in real space give results that coincide with
plete analogy to continuous space as the inverse Fourighose in Fourier space; we refrain from demonstrating this
transform of here. A simulation in real space has the disadvantage that the
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maximal possible time stepAt is restricted by At
< 7AX?/4\?, which enforces a smallt, otherwise the dis-
crete Eq.(53) loses stability; cf. Ref[13]. Simulations em-

PHYSICAL REVIEW EB69, 026116 (2004

not allowed to factorize as space and time are intimately
connected.
The situation resembles that of the checkerboard process

ploying periodic boundary conditions or stochastic bound4n 1+ 1 dimensiong36-39 driven by a velocity changing
aries with exponentially decaying autocorrelation indicaterandomly the sign which is modeled by the simplest discrete
that the GSR process does not depend on the boundary coprocess with exponentially decaying autocorrelation, the di-
ditions if we are not too close to the boundaries. chotomous Markovian process. The checkerboard process is
related to the Dirac equation or the Klein-Gordon equation in
d=1. Also, there the generalization to higher spatial dimen-
sions meets nontrivial difficultie37,3§.

We introduced in ¥ 1 dimensions a spatiotemporal sto-  Note that there exists a numerical method, viz., the Fou-
chastic process with an autocorrelation exponentially decayrer filter method, which allows one to generate noise of
ing both in space and time, thus being a generalization of thgrpitrary autocorrelation provided its Fourier transform ex-
OUP. An analogous generalization to higher spatial dimenjsts [2]." In this paper we are however interested in a con-

sions, although formally possible, seems physically noktryctive approach close to that for the OUP employing sto-
meaningful, as the autocorrelation function would factorizechastic differential equations.

in the spatial variables. Instead, for higher dimensions the
spatial part of the autocorrelation function should only de-
pend on the spatial distance. In addition, the construction of
a higher-dimensional process with exponentially decaying The work was partially supported by the DEGrant No.
autocorrelation should relay to that of the common OUP. FoBe 1417/3. A.T. acknowledges support by the Studienstif-
the relativistic OUHA 35] a similar situation appears already tung des Deutschen Volkes. Thanks are due to Dr. Markus

V. CONCLUSIONS
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